A Dielectric MXene‐Induced Self‐Built Electric Field in Polymer Electrolyte Triggering Fast Lithium‐Ion Transport and High‐Voltage Cycling Stability

Author:

Zhang Baolin1ORCID,Su Yufeng1,Chen Yangyang1,Qi Shengguang1,Li Mianrui1,Zou Wenwu1,Jiang Guoxing1,Zhang Weifeng1,Gao Yuqing1,Pan Chenhui1,Song Huiyu1,Cui Zhiming1,Zhang Chuanfang (John)2,Liang Zhenxing13,Du Li13ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China

2. College of Materials Science & Engineering Sichuan University Chengdu, Sichuan 610065 China

3. Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center Jieyang 515200 China

Abstract

AbstractQuasi‐solid polymer electrolyte (QPE) lithium (Li)‐metal battery holds significant promise in the application of high‐energy‐density batteries, yet it suffers from low ionic conductivity and poor oxidation stability. Herein, a novel self‐built electric field (SBEF) strategy is proposed to enhance Li+ transportation and accelerate the degradation dynamics of carbon‐fluorine bond cleavage in LiTFSI by optimizing the termination of MXene. Among them, the SBEF induced by dielectric Nb4C3F2 MXene effectively constructs highly conductive LiF‐enriched SEI and CEI stable interfaces, moreover, enhances the electrochemical performance of the QPE. The related Li‐ion transfer mechanism and dual‐reinforced stable interface are thoroughly investigated using ab initio molecular dynamics, COMSOL, XPS depth profiling, and ToF‐SIMS. This comprehensive approach results in a high conductivity of 1.34 mS cm−1, leading to a small polarization of approximately 25 mV for Li//Li symmetric cell after 6000 h. Furthermore, it enables a prolonged cycle life at a high voltage of up to 4.6 V. Overall, this work not only broadens the application of MXene for QPE but also inspires the great potential of the self‐built electric field in QPE‐based high‐voltage batteries.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3