Affiliation:
1. School of Materials Science & Engineering Georgia Institute of Technology Atlanta GA 30332 USA
2. School of Chemical & Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
3. Neutron Scattering Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA
4. Department of Mechanical Engineering and Materials Science Institute of Materials Science and Engineering Washington University in St. Louis St Louis MO 63130 USA
Abstract
AbstractChiral metal–organic frameworks (MOFs) have gained rising attention as ordered nanoporous materials for enantiomer separations, chiral catalysis, and sensing. Among those, chiral MOFs are generally obtained through complex synthetic routes by using a limited choice of reactive chiral organic precursors as the primary linkers or auxiliary ligands. Here, we report a template‐controlled synthesis of chiral MOFs from achiral precursors grown on chiral nematic cellulose‐derived nanostructured bio‐templates. We demonstrate that chiral MOFs, specifically, zeolitic imidazolate framework (ZIF),unc‐[Zn(2‐MeIm)2, 2‐MeIm=2‐methylimidazole], can be grown from regular precursors within nanoporous organized chiral nematic nanocellulosesviadirected assembly on twisted bundles of cellulose nanocrystals. The template‐grown chiral ZIF possesses tetragonal crystal structure with chiral space group ofP41, which is different from traditional cubic crystal structure ofI‐43 mfor freely grown conventional ZIF‐8. The uniaxially compressed dimensions of the unit cell of templated ZIF and crystalline dimensions are signatures of this structure. We observe that the templated chiral ZIF can facilitate the enantiotropic sensing. It shows enantioselective recognition and chiral sensing abilities with a low limit of detection of 39 μM and the corresponding limit of chiral detection of 300 μM for representative chiral amino acid, D‐ and L‐ alanine.
Funder
National Science Foundation
Air Force Office of Scientific Research
National Research Foundation of Korea
Subject
General Chemistry,Catalysis
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献