Singlet Fission in a New Series of Systematically Designed Through‐space Coupled Tetracene Oligomers

Author:

Majdecki Maciej1ORCID,Hsu Chao‐Hsien2ORCID,Wang Chih‐Hsing2ORCID,Shi Emily Hsue‐Chi2ORCID,Zakrocka Magdalena1ORCID,Wei Yu‐Chen2ORCID,Chen Bo‐Han3ORCID,Lu Chih‐Hsuan3ORCID,Yang Shang‐Da3ORCID,Chou Pi‐Tai2ORCID,Gaweł Przemysław1ORCID

Affiliation:

1. Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland

2. Department of Chemistry National Taiwan University Taipei 10617 Taiwan

3. Institute of Photonics Technologies National Tsing Hua University Hsinchu 30013 Taiwan

Abstract

AbstractSinglet fission (SF) holds great promise for current photovoltaic technologies, where tetracenes, with their relatively high triplet energies, play a major role for application in silicon‐based solar cells. However, the SF efficiencies in tetracene dimers are low due to the unfavorable energetics of their singlet and triplet energy levels. In the solid state, tetracene exhibits high yields of triplet formation through SF, raising great interest about the underlying mechanisms. To address this discrepancy, we designed and prepared a novel molecular system based on a hexaphenylbenzene core decorated with 2 to 6 tetracene chromophores. The spatial arrangement of tetracene units, induced by steric hindrance in the central part, dictates through‐space coupling, making it a relevant model for solid‐state chromophore organization. We then revealed a remarkable increase in SF quantum yield with the number of tetracenes, reaching quantitative (196 %) triplet pair formation in hexamer. We observed a short‐lived correlated triplet pair and limited magnetic effects, indicating ineffective triplet dissociation in these through‐space coupled systems. These findings emphasize the crucial role of the number of chromophores involved and the interchromophore arrangement for the SF efficiency. The insights gained from this study will aid designing more efficient and technology‐compatible SF systems for applications in photovoltaics.

Funder

Narodowe Centrum Nauki

Narodowa Agencja Wymiany Akademickiej

Infrastruktura PL-Grid

National Science and Technology Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3