Plasmonic Cu Nanoparticles for the Low‐temperature Photo‐driven Water‐gas Shift Reaction

Author:

Zhao Jiaqi12,Bai Ya345,Li Zhenhua1,Liu Jinjia456,Wang Wei7,Wang Pu12,Yang Bei8,Shi Run1,Waterhouse Geoffrey I. N.9,Wen Xiao‐Dong45,Dai Qing28,Zhang Tierui12ORCID

Affiliation:

1. Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China

2. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China

3. State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China

4. Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 China

5. Synfuels China Beijing 100195 China

6. College of Chemistry and Environmental Science Inner Mongolia Key Laboratory of Green Catalysis Inner Mongolia Normal University Hohhot 010022 China

7. Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China

8. CAS Key Laboratory of Nanophotonic Materials and Devices CAS Key Laboratory of Standardization and Measurement for Nanotechnology CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China

9. School of Chemical Sciences The University of Auckland Auckland 1142 New Zealand

Abstract

AbstractThe activation of water molecules in thermal catalysis typically requires high temperatures, representing an obstacle to catalyst development for the low‐temperature water‐gas shift reaction (WGSR). Plasmonic photocatalysis allows activation of water at low temperatures through the generation of light‐induced hot electrons. Herein, we report a layered double hydroxide‐derived copper catalyst (LD‐Cu) with outstanding performance for the low‐temperature photo‐driven WGSR. LD‐Cu offered a lower activation energy for WGSR to H2 under UV/Vis irradiation (1.4 W cm−2) compared to under dark conditions. Detailed experimental studies revealed that highly dispersed Cu nanoparticles created an abundance of hot electrons during light absorption, which promoted *H2O dissociation and *H combination via a carboxyl pathway, leading to the efficient production of H2. Results demonstrate the benefits of exploiting plasmonic phenomena in the development of photo‐driven low‐temperature WGSR catalysts.

Funder

National Natural Science Foundation of China

Postdoctoral Research Foundation of China

Natural Science Foundation of Beijing Municipality

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3