Towards More Sustainable Aqueous Zinc‐Ion Batteries

Author:

Zhu Jiacai1,Tie Zhiwei1,Bi Songshan1,Niu Zhiqiang1ORCID

Affiliation:

1. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Haihe Laboratory of Sustainable Chemical Transformations College of Chemistry Nankai University Tianjin 300071 P. R. China

Abstract

AbstractAqueous zinc‐ion batteries (AZIBs) are considered as the promising candidates for large‐scale energy storage because of their high safety, low cost and environmental benignity. The large‐scale applications of AZIBs will inevitably result in a large amount of spent AZIBs, which not only induce the waste of resources, but also pose environmental risks. Therefore, sustainable AZIBs have to be considered to minimize the risk of environmental pollution and maximize the utilization of spent compounds. Herein, this minireview focuses on the sustainability of AZIBs from material design and recycling techniques. The structure and degradation mechanism of AZIBs are discussed to guide the recycling design of the materials. Subsequently, the sustainability of component materials in AZIBs is further analysed to pre‐evaluate their recycling behaviors and mentor the selection of more sustainable component materials, including active materials in cathodes, Zn anodes, and aqueous electrolytes, respectively. According to the features of component materials, corresponding green and economic approaches are further proposed to realize the recycling of active materials in cathodes, Zn anodes and electrolytes, respectively. These advanced technologies endow the recycling of component materials with high efficiency and a closed‐loop control, ensuring that AZIBs will be the promising candidates of sustainable energy storage devices. This review will offer insight into potential future directions in the design of sustainable AZIBs.

Funder

Ministry of Science and Technology of the People's Republic of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3