Strategically Modulating Proton Activity and Electric Double Layer Adsorption for Innovative All‐Vanadium Aqueous Mn2+/Proton Hybrid Batteries

Author:

Li Ming1ORCID,Li Cong1,Zuo Chunli2,Hu Jisong1,Li Chen1,Luo Wen23,Luo Sha1,Duan An1,Wang Junjun2,Wang Xuanpeng34,Sun Wei1ORCID,Mai Liqiang2ORCID

Affiliation:

1. School of Materials and Energy University of Electronic Science and Technology of China Chengdu 611731 P. R. China

2. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China

3. Department of Physical Science & Technology School of Physics and Mechanics Wuhan University of Technology Wuhan 430070 P. R. China

4. Hubei Longzhong Laboratory Wuhan University of Technology (Xiangyang Demonstration Zone) Xiang‐yang 441000 China

Abstract

AbstractAqueous Mn‐ion batteries (MIBs) exhibit a promising development potential due to their cost‐effectiveness, high safety, and potential for high energy density. However, the development of MIBs is hindered by the lack of electrode materials capable of storing Mn2+ ions due to acidic manganese salt electrolytes and large ion radius. Herein, the tunnel‐type structure of monoclinic VO2 nanorods to effectively store Mn2+ ions via a reversible (de)insertion chemistry for the first time is reported. Utilizing exhaustive in situ/ex situ multi‐scale characterization techniques and theoretical calculations, the co‐insertion process of Mn2+/proton is revealed, elucidating the capacity decay mechanism wherein high proton activity leads to irreversible dissolution loss of vanadium species. Further, the Grotthuss transfer mechanism of protons is broken via a hydrogen bond reconstruction strategy while achieving the modulation of the electric double‐layer structure, which effectively suppresses the electrode interface proton activity. Consequently, the VO2 demonstrates excellent electrochemical performance at both ambient temperatures and −20 °C, especially maintaining a high capacity of 162 mAh g−1 at 5 A g−1 after a record‐breaking 20 000 cycles. Notably, the all‐vanadium symmetric pouch cells are successfully assembled for the first time based on the “rocking‐chair” Mn2+/proton hybrid mechanism, demonstrating the practical application potential.

Funder

Natural Science Foundation of Hubei Province

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3