Affiliation:
1. CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
2. University of Chinese Academy of Sciences Beijing 100049 P. R. China
3. Laboratory for Chemical Technology Ghent University Technologiepark 125 9052 Gent Belgium
Abstract
AbstractControlling the structure and properties of catalysts through atomic arrangement is the source of producing a new generation of advanced catalysts. A highly active and stable catalyst in catalytic reactions strongly depends on an ideal arrangement structure of metal atoms. We demonstrated that the introduction of the defect‐rich structures, low coordination number (CN), and tensile strain in three‐dimensional (3D) urchin‐like palladium nanoparticles through chlorine bonded with sp‐C in graphdiyne (Pd‐UNs/Cl‐GDY) can regulate the arrangement of metal atoms in the palladium nanoparticles to form a special structure. In situ Fourier infrared spectroscopy (FTIR) and theoretical calculation results show that Pd‐UNs/Cl‐GDY catalyst is beneficial to the oxidation and removal of CO intermediates. The Pd‐UNs/Cl‐GDY for methanol oxidation reaction (MOR) that display high current density (363.6 mA cm−2) and mass activity (3.6 A mgPd−1), 12.0 and 10.9 times higher than Pd nanoparticles, respectively. The Pd‐UNs/Cl‐GDY catalyst also exhibited robust stability with still retained 95 % activity after 2000 cycles. A defects libraries of the face‐centered cubic and hexagonal close‐packed crystal catalysts (FH‐NPs) were synthesized by introducing chlorine in graphdiyne. Such defect‐rich structures, low CN, and tensile strain tailoring methods have opened up a new way for the catalytic reaction of MOR.
Funder
Youth Innovation Promotion Association of the Chinese Academy of Sciences
Subject
General Chemistry,Catalysis
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献