Reversible Zn Metal Anodes Enabled by Trace Amounts of Underpotential Deposition Initiators

Author:

Dai Yuhang123,Zhang Chengyi4,Zhang Wei2,Cui Lianmeng1,Ye Chumei5,Hong Xufeng6,Li Jinghao1,Chen Ruwei2,Zong Wei2,Gao Xuan2,Zhu Jiexin13,Jiang Peie3,An Qinyou1,Brett Dan J. L.3,Parkin Ivan P.2,He Guanjie23ORCID,Mai Liqiang1

Affiliation:

1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 P. R. China

2. Christopher Ingold Laboratory Department of Chemistry University College London London WC1H 0AJ UK

3. Electrochemical Innovation Lab Department of Chemical Engineering University College London London WC1E 7JE UK

4. Institute of Technological Sciences Wuhan University Wuhan 430072 P. R. China

5. Department of Materials Science and Metallurgy University of Cambridge Cambridge CB3 0FS UK

6. Beijing Key Laboratory of Theory and Technology for Advanced Batteries Materials School of Materials Science and Engineering Peking University Beijing 100871 P. R. China

Abstract

AbstractRoutine electrolyte additives are not effective enough for uniform zinc (Zn) deposition, because they are hard to proactively guide atomic‐level Zn deposition. Here, based on underpotential deposition (UPD), we propose an “escort effect” of electrolyte additives for uniform Zn deposition at the atomic level. With nickel ion (Ni2+) additives, we found that metallic Ni deposits preferentially and triggers the UPD of Zn on Ni. This facilitates firm nucleation and uniform growth of Zn while suppressing side reactions. Besides, Ni dissolves back into the electrolyte after Zn stripping with no influence on interfacial charge transfer resistance. Consequently, the optimized cell operates for over 900 h at 1 mA cm−2 (more than 4 times longer than the blank one). Moreover, the universality of “escort effect” is identified by using Cr3+ and Co2+ additives. This work would inspire a wide range of atomic‐level principles by controlling interfacial electrochemistry for various metal batteries.

Funder

Engineering and Physical Sciences Research Council

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3