Realizing the Kinetic Origin of Hydrogen Evolution for Aqueous Zinc Metal Batteries

Author:

Rana Ashutosh1,Roy Kingshuk2,Heil Joseph N3,Nguyen James H.1,Renault Christophe4,Tackett Brian M.3,Dick Jeffrey E.15ORCID

Affiliation:

1. Department of Chemistry Purdue University West Lafayette IN 47907 USA

2. Research Institute for Sustainable Energy TCG Centres for Research and Education in Science and Technology Salt Lake Kolkata 700091 India

3. Davidson School of Chemical Engineering Purdue University West Lafayette IN 47907 USA

4. Department of Chemistry and Biochemistry Loyola University Chicago Chicago IL 60660 USA

5. Elmore Family School of Electrical and Computer Engineering Purdue University West Lafayette IN 47907 USA

Abstract

AbstractThe commercialization of zinc metal batteries (ZMBs) for large‐scale energy storage is hindered by challenges such as dendrite formation, the hydrogen evolution reaction (HER), and passivation/corrosion, which lead to poor stability of zinc metal anodes. HER is a primary contributor to this instability, and despite efforts to enhance ZMB cyclability, a significant knowledge gap remains regarding the origin of HER in these systems. Prior works, based primarily on theoretical calculations with minimal experimental support, suggest that HER originates from Zn2⁺‐solvated water. For the first time, by employing scanning electrochemical microscopy (SECM), and electrochemical mass spectrometry (ECMS), in real‐time the inherently intertwined nature of Zn electrodeposition and H₂ liberation is revealed, both exhibiting the same onset potential in voltammetry. The findings show that water molecules surrounding Zn2⁺ ions undergo reduction simultaneously during Zn2⁺ deposition. Additionally, ECMS conducted under chronopotentiometric/galvanostatic conditions at battery‐relevant current densities elucidates why elevated electrolyte concentrations enhance the prolonged cyclability of ZMBs. Understanding the origin of HER opens avenues for developing high‐performance, reliable aqueous ZMBs, addressing key challenges in their commercialization and advancing their technological capabilities.

Funder

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3