Lattice Mismatch at the Heterojunction of Perovskite Solar Cells

Author:

Wang Yong12,Zheng Dexu3,Wang Kai4,Yang Qi3,Qian Jin4,Zhou Jiaju3,Liu Shengzhong (Frank)125ORCID,Yang Dong15

Affiliation:

1. Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China

2. Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 China

3. China National Nuclear Power Co., Ltd. Beijing 100097 China

4. Huanjiang Laboratory School of Aeronautics and Astronautics Zhejiang University Hangzhou 310027 China

5. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China

Abstract

AbstractLattice mismatch significantly influences microscopic transport in semiconducting devices, affecting interfacial charge behavior and device efficacy. This atomic‐level disordering, often overlooked in previous research, is crucial for device efficiency and lifetime. Recent studies have highlighted emerging challenges related to lattice mismatch in perovskite solar cells, especially at heterojunctions, revealing issues like severe tensile stress, increased ion migration, and reduced carrier mobility. This review systematically discusses the effects of lattice mismatch on strain, material stability, and carrier dynamics. It also includes detailed characterizations of these phenomena and summarizes current strategies including epitaxial growth and buffer layer, as well as explores future solutions to mitigate mismatch‐induced issues. We also provide the challenges and prospects for lattice mismatch, aiming to enhance the efficiency and stability of perovskite solar cells, and contribute to renewable energy technology advancements.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3