Approaching Theoretical Performances of Electrocatalytic Hydrogen Peroxide Generation by Cobalt‐Nitrogen Moieties

Author:

Lin Runjia12,Kang Liqun34,Lisowska Karolina1,He Weiying35,Zhao Siyu14,Hayama Shusaku6,Hutchings Graham J.2,Brett Dan J. L.4,Corà Furio1,Parkin Ivan P.1,He Guanjie147ORCID

Affiliation:

1. Christopher Ingold Laboratory Department of Chemistry University College London 20 Gordon Street London WC1H 0AJ UK

2. Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT Cardiff Catalysis Institute School of Chemistry Cardiff University Cardiff UK

3. Department of Inorganic Spectroscopy Max-Planck-Institute for Chemical Energy Conversion Stiftstr. 34–36 45470 Mülheim an der Ruhr Germany

4. Department of Chemical Engineering University College London (UCL) London WC1E 7JE UK

5. University of Göttingen Institute of Inorganic Chemistry Tamannstrasse 4 37077 Göttingen Germany

6. Diamond Light Source Ltd Diamond House, Harwell Campus Didcot OX11 0DE UK

7. School of Chemistry University of Lincoln Brayford Pool Lincoln LN6 7TS UK

Abstract

AbstractElectrocatalytic oxygen reduction reaction (ORR) has been intensively studied for environmentally benign applications. However, insufficient understanding of ORR 2 e‐pathway mechanism at the atomic level inhibits rational design of catalysts with both high activity and selectivity, causing concerns including catalyst degradation due to Fenton reaction or poor efficiency of H2O2 electrosynthesis. Herein we show that the generally accepted ORR electrocatalyst design based on a Sabatier volcano plot argument optimises activity but is unable to account for the 2 e‐pathway selectivity. Through electrochemical and operando spectroscopic studies on a series of CoNx/carbon nanotube hybrids, a construction‐driven approach based on an extended “dynamic active site saturation” model that aims to create the maximum number of 2 e ORR sites by directing the secondary ORR electron transfer towards the 2 e intermediate is proven to be attainable by manipulating O2 hydrogenation kinetics.

Funder

Engineering and Physical Sciences Research Council

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3