Affiliation:
1. Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University 215123 Suzhou China
2. Macao Institute of Materials Science and Engineering Macau University of Science and Technology Taipa 999078 Macau SAR China
Abstract
AbstractResurfacing perovskite nanocrystals (NCs) with tight‐binding and conductive ligands to resolve the dynamic ligands—surface interaction is the fundamental issue for their applications in perovskite light‐emitting diodes (PeLEDs). Although various types of surface ligands have been proposed, these ligands either exhibit weak Lewis acid/base interactions or need high polar solvents for dissolution and passivation, resulting in a compromise in the efficiency and stability of PeLEDs. Herein, we report a chemically reactive agent (Iodotrimethylsilane, TMIS) to address the trade‐off among conductivity, solubility and passivation using all‐inorganic CsPbI3 NCs. The liquid TMIS ensures good solubility in non‐polar solvents and reacts with oleate ligands and produces in situ HI for surface etching and passivation, enabling strong‐binding ligands on the NCs surface. We report, as a result, red PeLEDs with an external quantum efficiency (EQE) of ≈23 %, which is 11.2‐fold higher than the control, and is among the highest CsPbI3 PeLEDs. We further demonstrate the universality of this ligand strategy in the pure bromide system (CsPbBr3), and report EQE of ≈20 % at 640, 652, and 664 nm. This represents the first demonstration of a chemically reactive ligand strategy that applies to different systems and works effectively in red PeLEDs spanning emission from pure‐red to deep‐red.
Funder
National Natural Science Foundation of China
Postdoctoral Science Foundation of Jiangsu Province
Subject
General Chemistry,Catalysis
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献