Iodotrimethylsilane as a Reactive Ligand for Surface Etching and Passivation of Perovskite Nanocrystals toward Efficient Pure‐red to Deep‐red LEDs

Author:

Zhao Feng1,Duan Hong‐Wei1,Li Sheng‐Nan1,Pan Jia‐Lin1,Shen Wan‐Shan1,Li Sheng‐Ming1,Zhang Qiao1,Wang Ya‐Kun1,Liao Liang‐Sheng12ORCID

Affiliation:

1. Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University 215123 Suzhou China

2. Macao Institute of Materials Science and Engineering Macau University of Science and Technology Taipa 999078 Macau SAR China

Abstract

AbstractResurfacing perovskite nanocrystals (NCs) with tight‐binding and conductive ligands to resolve the dynamic ligands—surface interaction is the fundamental issue for their applications in perovskite light‐emitting diodes (PeLEDs). Although various types of surface ligands have been proposed, these ligands either exhibit weak Lewis acid/base interactions or need high polar solvents for dissolution and passivation, resulting in a compromise in the efficiency and stability of PeLEDs. Herein, we report a chemically reactive agent (Iodotrimethylsilane, TMIS) to address the trade‐off among conductivity, solubility and passivation using all‐inorganic CsPbI3 NCs. The liquid TMIS ensures good solubility in non‐polar solvents and reacts with oleate ligands and produces in situ HI for surface etching and passivation, enabling strong‐binding ligands on the NCs surface. We report, as a result, red PeLEDs with an external quantum efficiency (EQE) of ≈23 %, which is 11.2‐fold higher than the control, and is among the highest CsPbI3 PeLEDs. We further demonstrate the universality of this ligand strategy in the pure bromide system (CsPbBr3), and report EQE of ≈20 % at 640, 652, and 664 nm. This represents the first demonstration of a chemically reactive ligand strategy that applies to different systems and works effectively in red PeLEDs spanning emission from pure‐red to deep‐red.

Funder

National Natural Science Foundation of China

Postdoctoral Science Foundation of Jiangsu Province

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3