In Situ Formation of Iodide Precursor for Perovskite Quantum Dots with Application in Efficient Solar Cells

Author:

Ye Lvhao1,Chen Jingxuan1,Zhang Mingxu1,Wang Guoliang1,Zhang Xiaoliang1ORCID

Affiliation:

1. School of Materials Science and Engineering Beihang University Beijing 100191 China

Abstract

AbstractPerovskite quantum dots (PQDs) become a kind of competitive material for fabricating high‐performance solar cells due to their solution processability and outstanding optoelectronic properties. However, the current synthesis method of PQDs is mostly based on the binary‐precursor method, which results in a large deviation of the I/Pb input ratio in the reaction system from the stoichiometric ratio of PQDs. Herein, a ternary‐precursor method with an iodide source self‐filling ability is reported for the synthesis of the CsPbI3 PQDs with high optoelectronic properties. Systematically experimental characterizations and theoretical calculations are conducted to fundamentally understand the effects of the I/Pb input molar ratio on the crystallographic and optoelectronic properties of PQDs. The results reveal that increasing the I/Pb input molar ratio can obtain ideal cubic structure PQDs with iodine‐rich surfaces, which can significantly reduce the surface defects of PQDs and realize high orientation of PQD solids, facilitating charge carrier transport in the PQD solids with diminished nonradiative recombination. Consequently, the PQD solar cells exhibit an impressive efficiency of 15.16%, which is largely improved compared with that of 12.83% for the control solar cell. This work provides a feasible strategy for synthesizing high‐quality PQDs for high‐performance optoelectronic devices.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3