Molecular Bridge on Buried Interface for Efficient and Stable Perovskite Solar Cells

Author:

Guo Haodan123,Xiang Wanchun1ORCID,Fang Yanyan23,Li Jingrui4,Lin Yuan23

Affiliation:

1. Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering Shaanxi Normal University Xi'an 710119 China

2. CAS Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China

3. University of Chinese Academy of Sciences Beijing 100049 China

4. School of Electronic Science and Engineering Xi'an Jiaotong University Xi'an 710049 China

Abstract

AbstractThe interface of perovskite solar cells (PSCs) is significantly important for charge transfer and device stability, while the buried interface with the impact on perovskite film growth has been paid less attention. Herein, we use a molecular modifier, glycocyamine (GDA) to build a molecular bridge on the buried interface of SnO2/perovskite, resulting in superior interfacial contact. This is achieved through the strongly interaction between GDA and SnO2, which also appreciably modulates the energy level. Moreover, GDA can regulate the perovskite crystal growth, yielding perovskite film with enlarged grain size and absence of pinholes, exhibiting substantially reduced defect density. Consequently, PSCs with GDA modification demonstrate significant improvement of open circuit voltage (close to 1.2 V) and fill factor, leading to an improved power conversion efficiency from 22.60 % to 24.70 %. Additionally, stabilities of GDA devices under maximum power point and 85 °C heat both perform better than the control devices.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3