Insight into Bioactivity of In‐situ Trapped Enzyme‐Covalent‐Organic Frameworks

Author:

Liang Jieying1ORCID,Ruan Juanfang2ORCID,Njegic Bosiljka3,Rawal Aditya3,Scott Jason1,Xu Jiangtao1,Boyer Cyrille1ORCID,Liang Kang14ORCID

Affiliation:

1. School of Chemical Engineering and Australian Centre for NanoMedicine The University of New South Wales Sydney NSW 2052 Australia

2. Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales Sydney NSW 2052 Australia

3. Nuclear Magnetic Resonance Facility, Mark Wainwright Analytical Centre University of New South Wales Sydney NSW 2052 Australia

4. Graduate School of Biomedical Engineering The University of New South Wales Sydney NSW 2052 Australia

Abstract

AbstractSelecting a suitable support material for enzyme immobilization with excellent biocatalytic activity and stability is a critical aspect in the development of functional biosystems. The highly stable and metal‐free properties of covalent‐organic frameworks (COFs) make them ideal supports for enzyme immobilization. Herein, we constructed three kinds of COFs via a biofriendly and one‐pot synthetic strategy at room temperature in aqueous solution. Among the three developed COFs (COF‐LZU1, RT‐COF‐1 and ACOF‐1), the horseradish peroxidase (HRP)‐incorporated COF‐LZU1 is found to retain the highest activity. Structural analysis reveals that a weakest interaction between the hydrated enzyme and COF‐LZU1, an easiest accessibility by the COF‐LZU1 to the substrate, as well as an optimal conformation of enzyme together promote the bioactivity of HRP‐COF‐LZU1. Furthermore, the COF‐LZU1 is revealed to be a versatile nanoplatform for encapsulating multiple enzymes. The COF‐LZU1 also offers superior protection for the immobilized enzymes under harsh conditions and during recycling. The comprehensive understanding of interfacial interactions of COF host and enzyme guest, the substrate diffusion, as well as the enzyme conformation alteration within COF matrices represents an opportunity to design the ideal biocatalysts and opens a broad range of applications of these nanosystems.

Funder

Australian Research Council

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3