Suppressing Universal Cathode Crossover in High‐Energy Lithium Metal Batteries via a Versatile Interlayer Design**

Author:

Xie Chuyi1,Zhao Chen2,Jeong Heonjae3,Li Tianyi4,Li Luxi4,Xu Wenqian4,Yang Zhenzhen2,Lin Cong1,Liu Qiang1,Cheng Lei3,Huang Xingkang2,Xu Gui‐Liang2ORCID,Amine Khalil2567,Chen Guohua18

Affiliation:

1. Department of Mechanical Engineering and Research Institute for Smart Energy (RISE) The Hong Kong Polytechnic University 11 Yuk Choi Rd Hung Hom Hong Kong

2. Chemical Sciences and Engineering Division Argonne National Laboratory 9700 S Cass Ave Lemont IL 60439 USA

3. Materials Science Division Argonne National Laboratory 9700 S Cass Ave Lemont IL 60439 USA

4. X-ray Sciences Division Argonne National Laboratory 9700 S Cass Ave Lemont IL 60439 USA

5. Materials Science and Engineering Stanford University Stanford CA 94305 USA

6. Materials Science and Nanoengineering Mohammed VI Polytechnic University Lot 660 Hay Moulay Rachid Ben Guerir 43150 Morocco

7. Institute for Research& Medical Consultations Imam Abdulrahman Bin Faisal University (IAU) Dammam Saudi Arabia

8. School of Energy and Environment City University of Hong Kong Kowloon Hong Kong

Abstract

AbstractThe universal cathode crossover such as chemical and oxygen has been significantly overlooked in lithium metal batteries using high‐energy cathodes which leads to severe capacity degradation and raises serious safety concerns. Herein, a versatile and thin (≈25 μm) interlayer composed of multifunctional active sites was developed to simultaneously regulate the Li deposition process and suppress the cathode crossover. The as‐induced dual‐gradient solid‐electrolyte interphase combined with abundant lithiophilic sites enable stable Li stripping/plating process even under high current density of 10 mA cm−2. Moreover, X‐ray photoelectron spectroscopy and synchrotron X‐ray experiments revealed that N‐rich framework and CoZn dual active sites can effectively mitigate the undesired cathode crossover, hence significantly minimizing Li corrosion. Therefore, assembled lithium metal cells using various high‐energy cathode materials including LiNi0.7Mn0.2Co0.1O2, Li1.2Co0.1Mn0.55Ni0.15O2, and sulfur demonstrate significantly improved cycling stability with high cathode loading.

Funder

U.S. Department of Energy

Shenzhen Science and Technology Innovation Program

Publisher

Wiley

Subject

General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3