Regulating Li Nucleation and Growth Heterogeneities via Near‐Surface Lithium‐Ion Irrigation for Stable Anode‐Less Lithium Metal Batteries

Author:

Xie Chuyi1,Zhao Chen2,Jeong Heonjae3,Liu Qiang1,Li Tianyi4,Xu Wenqian4,Cheng Lei3,Xu Gui‐Liang2ORCID,Amine Khalil2,Chen Guohua1

Affiliation:

1. Department of Mechanical Engineering The Hong Kong Polytechnic University 11 Yuk Choi Rd, Hung Hom Hong Kong 999077 China

2. Chemical Sciences and Engineering Division Argonne National Laboratory 9700 S Cass Ave Lemont IL 60439 USA

3. Materials Science Division Argonne National Laboratory 9700 S Cass Ave Lemont IL 60439 USA

4. X‐ray Sciences Division Argonne National Laboratory 9700 S Cass Ave Lemont IL 60439 USA

Abstract

AbstractThe inhomogeneous nucleation and growth of Li dendrite combined with the spontaneous side reactions with the electrolytes dramatically challenge the stability and safety of Li metal anode (LMA). Despite tremendous endeavors, current success relies on the use of significant excess of Li to compensate the loss of active Li during cycling. Herein, a near‐surface Li+ irrigation strategy is developed to regulate the inhomogeneous Li deposition behavior and suppress the consequent side reactions under limited Li excess condition. The conformal polypyrrole (PPy) coating layer on Cu surface via oxidative chemical vapor deposition technique can induce the migration of Li+ to the interregional space between PPy and Cu, creating a near‐surface Li+‐rich region to smooth diffusion of ion flux and uniform the deposition. Moreover, as evidenced by multiscale characterizations including synchrotron high‐energy X‐ray diffraction scanning, a robust N‐rich solid‐electrolyte interface (SEI) is formed on the PPy skeleton to effectively suppress the undesired SEI formation/dissolution process. Strikingly, stable Li metal cycling performance under a high areal capacity of 10 mAh cm−2 at 2.0 mA cm−2 with merely 0.5 × Li excess is achieved. The findings not only resolve the long‐standing poor LMA stability/safety issues, but also deepen the mechanism understanding of Li deposition process.

Funder

Shenzhen Science and Technology Innovation Program

U.S. Department of Energy

Publisher

Wiley

Subject

Biomaterials,Biotechnology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3