Influence of Donor Skeleton on Intramolecular Electron Transfer Amount for Efficient Perovskite Solar Cells

Author:

Geng Shengwei1,Duan Jialong1,Liu Naimin1,Li Hui1,Zhu Xixi1,Duan Xingxing1,Guo Qiyao1,Dou Jie1,He Benlin2,Zhao Yuanyuan3,Tang Qunwei1ORCID

Affiliation:

1. Institute of Carbon Neutrality College of Chemical and Biological Engineering Shandong University of Science and Technology Qingdao 266590 PR China

2. School of Materials Science and Engineering Ocean University of China Qingdao 266590 PR China

3. College of Energy Storage Technology Shandong University of Science and Technology Qingdao 266590 PR China

Abstract

AbstractThe passivation of the defects derived from rapid‐crystallization with electron‐donating molecules is always a prerequisite to obtain desirable perovskite films for efficient and stable solar cells, thus, the in‐depth understanding on the correlations between molecular structure and passivation capacity is of great importance for screening passivators. Here, we introduce the double‐ended amide molecule into perovskite precursor solution to modulate crystallization process and passivate defects. By regulating the intermediate bridging skeletons with alkyl, alkenyl and benzene groups, the results show the passivation strength highly depends on the spin‐state electronic structure that serves as an intrinsic descriptor to determine the intramolecular charge distribution by controlling orbital electron transfer from the donor segment to acceptor segment. Upon careful optimization, the benzene‐bridged amide molecule demonstrates superior efficacy on improving perovskite film quality. As a physical proof‐of‐concept, the carbon‐based, all‐inorganic CsPbI2Br solar cell delivers a significantly increased efficiency of 15.51 % with a remarkably improved stability. Based on the same principle, a champion efficiency of 24.20 % is further obtained on the inverted (Cs0.05MA0.05FA0.9)Pb(I0.93Br0.07)3 solar cell. These findings provide new fundamental insights into the influence of spin‐state modulation on effective perovskite solar cells.

Funder

National Natural Science Foundation of China

Taishan Scholar Foundation of Shandong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3