NH4+ Deprotonation at Interfaces Induced Reversible H3O+/NH4+ Co‐insertion/Extraction

Author:

Huang Meng123,He Qiu4,Wang Junjun3,Liu Xiong5,Xiong Fangyu36,Liu Yu37,Guo Ruiting3,Zhao Yan48,Yang Jinlong12,Mai Liqiang3ORCID

Affiliation:

1. Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China

2. College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China

3. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 China

4. College of Materials Science and Engineering Sichuan University Chengdu 610065 China

5. School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 China

6. Department of Physics City University of Hong Kong Tat Chee Avenue, Kowloon 999077 Hong Kong China

7. Department of Materials Science and Engineering National University of Singapore Singapore 117574 Singapore

8. The Institute of Technological Sciences Wuhan University Hubei Wuhan 430072 China

Abstract

AbstractIon insertions always involve electrode‐electrolyte interface process, desolvation for instance, which determines the electrochemical kinetics. However, it′s still a challenge to achieve fast ion insertion and investigate ion transformation at interface. Herein, the interface deprotonation of NH4+ and the introduced dissociation of H2O molecules to provide sufficient H3O+ to insert into materials′ structure for fast energy storages are revealed. Lewis acidic ion‐NH4+ can, on one hand provide H3O+ itself via deprotonation, and on the other hand hydrolyze with H2O molecules to produce H3O+. In situ attenuated total reflection‐Fourier transform infrared ray method probed the interface accumulation and deprotonation of NH4+, and density functional theory calculations manifested that NH4+ tend to thermodynamically adsorb on the surface of monoclinic VO2, and deprotonate to provide H3O+. In addition, the inserted NH4+ has a positive effect for stabilizing the VO2(B) structure. Therefore, high specific capacity (>300 mAh g−1) and fast ionic insertion/extraction (<20 s) can be realized in VO2(B) anode. This interface derivation proposes a new path for designing proton ion insertion/extraction in mild electrolyte.

Funder

Natural Science Foundation of Guangdong Province

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Chemistry,Catalysis

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3