Light Alters the NH3 vs N2H4 Product Profile in Iron‐catalyzed Nitrogen Reduction via Dual Reactivity from an Iron Hydrazido (Fe=NNH2) Intermediate

Author:

Garrido‐Barros Pablo1,Chalkley Matthew J.1,Peters Jonas C.1ORCID

Affiliation:

1. Division of Chemistry and Chemical Engineering California Institute of Technology (Caltech) 1200 E California Blvd Pasadena CA-91125 USA

Abstract

AbstractWhereas synthetically catalyzed nitrogen reduction (N2R) to produce ammonia is widely studied, catalysis to instead produce hydrazine (N2H4) has received less attention despite its considerable mechanistic interest. Herein, we disclose that irradiation of a tris(phosphine)borane (P3B) Fe catalyst, P3BFe+, significantly alters its product profile to increase N2H4 versus NH3; P3BFe+ is otherwise known to be highly selective for NH3. We posit a key terminal hydrazido intermediate, P3BFe=NNH2, as selectivity‐determining. Whereas its singlet ground state undergoes protonation to liberate NH3, a low‐lying triplet excited state leads to reactivity at Nα and formation of N2H4. Associated electrochemical and spectroscopic studies establish that N2H4 lies along a unique product pathway; NH3 is not produced from N2H4. Our findings are distinct from the canonical mechanism for hydrazine formation, which proceeds via a diazene (HN=NH) intermediate and showcase light as a tool to tailor selectivity.

Funder

Foundation for the National Institutes of Health

Publisher

Wiley

Subject

General Chemistry,Catalysis

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3