Inept N2 Activation of Tri‐Nuclear Nickel Complex with Labile Sulfur Ligands Facilitates Selective N2H4 Formation in Electrocatalytic Conversion of N2**

Author:

Kumar Ray Anuj1ORCID,Paul Ankan1ORCID

Affiliation:

1. School of Chemical Sciences Indian Association for the Cultivation of Science 2A&2B, Raja S.C. Mullick Road, Jadavpur Kolkata 700032 India

Abstract

AbstractConversion of N2 to the energy vector N2H4 under benign conditions is highly desirable. However, such N2 fixation processes are extremely rare. It has been recently reported that N2 to N2H4 conversion can be achieved electrochemically by using a trinuclear [Ni3(S2C3H6)4]2− complex (named as [Ni3S8]2−). There are hardly any precedents of Nitrogen Reduction Reaction (NRR) by molecular catalysts having Ni and the highly unusual selectivity for N2H4 over NH3 makes this electrochemical reduction unique. A systematic theoretical study employing calibrated Density Functional Theory to unearth the mechanisms of NRR (4e/4H+) and Hydrogen Evolution Reaction (2e/2H+) was conducted for the aforementioned trinuclear Ni complex. Our findings unravel a curious case of ligand lability working in tandem with metal centers in facilitating this unprecedented electrocatalytic activity. Furthermore, it is shown that the poor N−N bond activation property of Ni is responsible for this unusual selectivity. Additionally, the Hydrogen Evolution Reaction (HER) mechanistic pathways have also been delineated in this report. The mechanistic intricacies thus unearthed in this study may assist in developing more efficient electrocatalysts for N2H4 production through NRR.

Publisher

Wiley

Subject

General Chemistry,Catalysis,Organic Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3