A “middle‐out approach” for the prediction of human drug disposition from preclinical data using simplified physiologically based pharmacokinetic (PBPK) models

Author:

Yau Estelle12ORCID,Gertz Michael2,Ogungbenro Kayode1ORCID,Aarons Leon1ORCID,Olivares‐Morales Andrés2ORCID

Affiliation:

1. Centre for Applied Pharmacokinetic Research The University of Manchester Manchester UK

2. Roche Pharma Research and Early Development Roche Innovation Center Basel Basel Switzerland

Abstract

AbstractSimplified physiologically based pharmacokinetic (PBPK) models using estimated tissue‐to‐unbound plasma partition coefficients (Kpus) were previously investigated by fitting them to in vivo pharmacokinetic (PK) data. After optimization with preclinical data, the performance of these models for extrapolation of distribution kinetics to human were evaluated to determine the best approach for the prediction of human drug disposition and volume of distribution (Vss) using PBPK modeling. Three lipophilic bases were tested (diazepam, midazolam, and basmisanil) for which intravenous PK data were available in rat, monkey, and human. The models with Kpu scalars using k‐means clustering were generally the best for fitting data in the preclinical species and gave plausible Kpu values. Extrapolations of plasma concentrations for diazepam and midazolam using these models and parameters obtained were consistent with the observed clinical data. For diazepam and midazolam, the human predictions of Vss after optimization in rats and monkeys were better compared with the Vss estimated from the traditional PBPK modeling approach (varying from 1.1 to 3.1 vs. 3.7‐fold error). For basmisanil, the sparse preclinical data available could have affected the model performance for fitting and the subsequent extrapolation to human. Overall, this work provides a rational strategy to predict human drug distribution using preclinical PK data within the PBPK modeling strategy.

Publisher

Wiley

Subject

Pharmacology (medical),Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3