Deconvolution of synthetic mRNA expression: Nucleoside chemistry alters translatability

Author:

Moradian Hanieh12ORCID,Schwestka Marko12,Roch Toralf23,Gossen Manfred12

Affiliation:

1. Institute of Active Polymers, Helmholtz‐Zentrum Hereon Teltow Germany

2. Berlin Institute of Health Center for Regenerative Therapies (BCRT) Berlin Germany

3. CheckImmune GmbH, Campus Virchow Klinikum Berlin Germany

Abstract

AbstractRecent technological advances in the production of in vitro transcribed messenger RNA (IVT‐mRNA) facilitate its clinical use as well as its application in basic research. In this regard, numerous chemical modifications, which are not naturally observed in endogenous mRNA, have been implemented primarily to address the issue of immunogenicity and improve its biological performance. However, recent findings suggested pronounced differences between expression levels of IVT‐mRNAs with different nucleoside modifications in transfected cells. Given the multistep process of IVT‐mRNA delivery and subsequent intracellular expression, it is unclear which step is influenced by IVT‐mRNA chemistry. Here, we deconvolute this process and show that the nucleoside modification does not interfere with complexation of carriers, their physicochemical properties, and extracellular stability, as exemplified by selected modifications. The immediate effect of mRNA chemistry on the efficiency of ribosomal protein synthesis as a contributor to differences in expression was quantified by in vitro cell‐free translation. Our results demonstrate that for the nucleoside modifications tested, translatability was the decisive step in determining overall protein production. Also of special importance for future work on rational selection of tailored synthetic mRNA chemistries, our findings set a workflow to identify potentially limiting, modification‐dependent steps in the complex delivery process.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3