A bioengineered anti‐VEGF protein with high affinity and high concentration for intravitreal treatment of wet age‐related macular degeneration

Author:

Huang Chengnan1ORCID,Wang Yuelin23,Huang Jinliang4,Liu Huiqin4,Chen Zhidong1,Jiang Yang23,Chen Youxin23,Qian Feng1ORCID

Affiliation:

1. School of Pharmaceutical Sciences, Beijing Frontier Research Center for Biological Structure, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) Tsinghua University Beijing People's Republic of China

2. Department of Ophthalmology Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences Beijing People's Republic of China

3. Key Lab of Ocular Fundus Diseases, Chinese Academy of Medical Sciences Beijing People's Republic of China

4. Quaerite Biopharm Research Beijing People's Republic of China

Abstract

AbstractIntravitreal (IVT) injection of anti‐vascular endothelial growth factor (anti‐VEGF) has greatly improved the treatment of many retinal disorders, including wet age‐related macular degeneration (wAMD), which is the third leading cause of blindness. However, frequent injections can be difficult for patients and may lead to various risks such as elevated intraocular pressure, infection, and retinal detachment. To address this issue, researchers have found that IVT injection of anti‐VEGF proteins at their maximally viable concentration and dose can be an effective strategy. However, the intrinsic protein structure can limit the maximum concentration due to stability and solution viscosity. To overcome this challenge, we developed a novel anti‐VEGF protein called nanoFc by fusing anti‐VEGF nanobodies with a crystallizable fragment (Fc). NanoFc has demonstrated high binding affinity to VEGF165 through multivalency and potent bioactivity in various bioassays. Furthermore, nanoFc maintains satisfactory chemical and physical stability at 4°C over 1 month and is easily injectable at concentrations up to 200 mg/mL due to its unique architecture that yields a smaller shape factor. The design of nanoFc offers a bioengineering strategy to ensure both strong anti‐VEGF binding affinity and high protein concentration, with the goal of reducing the frequency of IV injections.

Publisher

Wiley

Subject

Pharmaceutical Science,Biomedical Engineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3