3D SERS and Raman imaging of protective microcapsules containing bio‐active terpenoids

Author:

Cardoni Francesco1ORCID,Meneghetti Moreno1ORCID,Litti Lucio1ORCID

Affiliation:

1. Department of Chemical Sciences University of Padua Padua Italy

Abstract

AbstractTerpenoids play a major role in agriculture, given their fungicidal and herbicidal actions, as well as their favorable toxicological, ecotoxicological, and environmental profiles. Despite all these advantages, terpenoids are reported to be unstable in direct sunlight and atmospheric conditions, so both commercial suppliers and scientific literature foresee their protection by encapsulation. The so‐called microcapsules (μCaps) are therefore of high relevance as drug‐delivery vectors, but very few techniques focus on their surface as well as on their morphological characterization. Indeed, these aspects are of great importance, given that their surface chemistry governs both their colloidal stability and mechanism of action. Common analysis techniques, such as chromatographic and mass‐spectrometric ones, are destructive, require sample preparation, and do not result in the complete morphological characterization of the microcapsules. Micro‐Raman spectroscopy, in conjunction with the surface‐enhanced Raman spectroscopy (SERS) effect, offers a valuable alternative method of investigation capable of achieving a complete and non‐destructive morphological characterization of the terpenoid‐encapsulating systems, the dimensions of which fall within the micrometric range. In addition, the SERS effect can be exploited by fabricating the microcapsules with gold nanostars (AuNSs) modified with chitosan and a SERS reporter (Nile Blue A). Thanks to the high contrast provided by the SERS signals of this tag, it was possible to localize and confirm the chitosan in the morphology of the microcapsules. The results of this study shed new light on the possibility of analyzing terpenoid‐encapsulating microcapsules and possibly other kinds of encapsulates brought by using Raman spectroscopy and by exploiting the SERS effect.

Publisher

Wiley

Subject

Spectroscopy,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3