Solving the time capacitated arc routing problem under fuzzy and stochastic travel and service times

Author:

Martin Xabier A.1ORCID,Panadero Javier2ORCID,Peidro David3ORCID,Perez‐Bernabeu Elena1ORCID,Juan Angel A.1ORCID

Affiliation:

1. Department of Applied Statistics and OR Universitat Politècnica de València Alcoy Spain

2. Department of Management Universitat Politècnica de Catalunya Barcelona Spain

3. Department of Management Universitat Politècnica de València Alcoy Spain

Abstract

AbstractStochastic, as well as fuzzy uncertainty, can be found in most real‐world systems. Considering both types of uncertainties simultaneously makes optimization problems incredibly challenging. In this paper we propose a fuzzy simheuristic to solve the Time Capacitated Arc Routing Problem (TCARP) when the nature of the travel time can either be deterministic, stochastic or fuzzy. The main goal is to find a solution (vehicle routes) that minimizes the total time spent in servicing the required arcs. However, due to uncertainty, other characteristics of the solution are also considered. In particular, we illustrate how reliability concepts can enrich the probabilistic information given to decision‐makers. In order to solve the aforementioned optimization problem, we extend the concept of simheuristic framework so it can also include fuzzy elements. Hence, both stochastic and fuzzy uncertainty are simultaneously incorporated into the CARP. In order to test our approach, classical CARP instances have been adapted and extended so that customers' demands become either stochastic or fuzzy. The experimental results show the effectiveness of the proposed approach when compared with more traditional ones. In particular, our fuzzy simheuristic is capable of generating new best‐known solutions for the stochastic versions of some instances belonging to the tegl, tcarp, val, and rural benchmarks.

Funder

Generalitat Valenciana

Publisher

Wiley

Subject

Computer Networks and Communications,Hardware and Architecture,Information Systems,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3