Solving NP-Hard Challenges in Logistics and Transportation under General Uncertainty Scenarios Using Fuzzy Simheuristics

Author:

Juan Angel A.1ORCID,Rabe Markus2ORCID,Ammouriova Majsa3ORCID,Panadero Javier4ORCID,Peidro David1ORCID,Riera Daniel3ORCID

Affiliation:

1. Research Center on Production Management and Engineering, Universitat Politècnica de València, Ferrandiz-Carbonell, 03801 Alcoy, Spain

2. Department of IT in Production and Logistics, TU Dortmund University, Leonhard-Euler-Str. 5, 44227 Dortmund, Germany

3. Computer Science Department, Universitat Oberta de Catalunya, 156 Rambla del Poblenou, 08018 Barcelona, Spain

4. Department of Computer Architecture & Operating Systems, Universitat Autònoma de Barcelona, Carrer de les Sitges s/n, 08193 Bellaterra, Spain

Abstract

In the field of logistics and transportation (L&T), this paper reviews the utilization of simheuristic algorithms to address NP-hard optimization problems under stochastic uncertainty. Then, the paper explores an extension of the simheuristics concept by introducing a fuzzy layer to tackle complex optimization problems involving both stochastic and fuzzy uncertainties. The hybrid approach combines simulation, metaheuristics, and fuzzy logic, offering a feasible methodology to solve large-scale NP-hard problems under general uncertainty scenarios. These scenarios are commonly encountered in L&T optimization challenges, such as the vehicle routing problem or the team orienteering problem, among many others. The proposed methodology allows for modeling various problem components—including travel times, service times, customers’ demands, or the duration of electric batteries—as deterministic, stochastic, or fuzzy items. A cross-problem analysis of several computational experiments is conducted to validate the effectiveness of the fuzzy simheuristic methodology. Being a flexible methodology that allows us to tackle NP-hard challenges under general uncertainty scenarios, fuzzy simheuristics can also be applied in fields other than L&T.

Funder

Spanish Ministry of Science and Innovation

Generalitat Valenciana

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference46 articles.

1. Cinar, D., Gakis, K., and Pardalos, P.M. (2017). Sustainable Logistics and Transportation, Springer.

2. Optimization modeling for logistics: Options and implementations;Bartolacci;J. Bus. Logist.,2012

3. Heuristics for NP-hard optimization problems-simpler is better!?;Logist. Supply Chain. Sustain. Glob. Chall.,2015

4. Vehicle routing problem and related algorithms for logistics distribution: A literature review and classification;Konstantakopoulos;Oper. Res.,2020

5. A simheuristic approach for throughput maximization of asynchronous buffered stochastic mixed-model assembly lines;Lopes;Comput. Oper. Res.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3