A sparse empirical Bayes approach to high‐dimensional Gaussian process‐based varying coefficient models

Author:

Kim Myungjin123ORCID,Goh Gyuhyeong1ORCID

Affiliation:

1. Department of Statistics Kyungpook National University Daegu South Korea

2. KNU LAMP Research Center Kyungpook National University Daegu South Korea

3. KNU Institute of Basic Sciences Kyungpook National University Daegu South Korea

Abstract

AbstractDespite the increasing importance of high‐dimensional varying coefficient models, the study of their Bayesian versions is still in its infancy. This paper contributes to the literature by developing a sparse empirical Bayes formulation that addresses the problem of high‐dimensional model selection in the framework of Bayesian varying coefficient modelling under Gaussian process (GP) priors. To break the computational bottleneck of GP‐based varying coefficient modelling, we introduce the low‐cost computation strategy that incorporates linear algebra techniques and the Laplace approximation into the evaluation of the high‐dimensional posterior model distribution. A simulation study is conducted to demonstrate the superiority of the proposed Bayesian method compared to an existing high‐dimensional varying coefficient modelling approach. In addition, its applicability to real data analysis is illustrated using yeast cell cycle data.

Funder

National Research Foundation of Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3