Theoretical insights toward a highly responsive AgInSe2 photodetector

Author:

Ebon Md. Islahur Rahman1ORCID,Abir Ahnaf Tahmid1,Pathak Dinesh2,Hossain Jaker1ORCID

Affiliation:

1. Solar Energy Laboratory, Department of Electrical and Electronic Engineering University of Rajshahi Rajshahi Bangladesh

2. Department of Physics, St. Augustine Campus The University of the West Indies St Augustine Trinidad and Tobago

Abstract

AbstractThis treatise showcases the design as well as modeling about a photodetector (PD) based on AgInSe2 (AISe), a direct bandgap chalcopyrite with a bandgap of 1.19 eV. The PD exhibits outstanding optical and electronic characteristics, showcasing remarkable performance. The PD has been systematically investigated by varying the width, carrier density, and defect densities of specific layers, as well as the interface defect density of specific interfaces. Various layers are optimized to enhance the overall performance of the PD and the impact of different device resistances is analyzed. The photocurrent (JSC) and voltage (VOC) of the heterostructure photodetector are determined to be 38.60 mA/cm2 and 1.0 V, in turn. The maximum responsivity (R) and detectivity (D*) are identified as 0.70 A/W and 4.60 × 1016 Jones, respectively at a wavelength of 940 nm. The spectral response exhibits significantly higher values in the range of 800–1000 nm, indicating the device's capability to detect near‐infrared (NIR) light. This research provides valuable insights for the manufacturing of AISe material‐based photodetectors with enhanced performance.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3