Dipoles and defects caused by CO2 plasma improve carrier transport of silicon solar cells

Author:

Huang Shenglei123ORCID,Yang Yuhao1,Li Junjun4,Jiang Kai13,Li Xiaodong13,Zhou Yinuo13ORCID,Li Zhenfei1,Wang Guangyuan1,Shi Qiang1,Shi Jianhua1,Du Junlin1ORCID,Han Anjun15ORCID,Yu Jian4ORCID,Meng Fanying13,Zhang Liping13,Liu Zhengxin123,Liu Wenzhu13

Affiliation:

1. Research Center for New Energy Technology (RCNET), National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology (SIMIT) Chinese Academy of Sciences (CAS) Shanghai People's Republic of China

2. School of Physical Science and Technology ShanghaiTech University Shanghai People's Republic of China

3. University of Chinese Academy of Sciences (UCAS) Beijing People's Republic of China

4. School of New Energy and Materials Southwest Petroleum University Chengdu People's Republic of China

5. Science and Technology on Micro‐system Laboratory, Shanghai Institute of Microsystem and Information Technology (SIMIT) Chinese Academy of Sciences (CAS) Shanghai People's Republic of China

Abstract

AbstractCarrier‐selective contact is a fundamental issue for solar cells. For silicon heterojunction (SHJ) solar cells, it is important to improve hole transport because of the low doping efficiency of boron in amorphous silicon and the barrier stemming from valence band offset. Here, we develop a carbon dioxide (CO2) plasma treatment (PT) process to form dipoles and defect states. We find a dipole moment caused by longitudinal distribution of H and O atoms. It improves hole transport and blocks electron transport and thus suppresses carrier recombination. In the meantime, the CO2 PT process also results in defect states, which reduce passivation performance but improve hole hopping in the intrinsic amorphous layer. As a balance, an appropriate CO2 PT process at the i/p interface increases fill factor and power conversion efficiency of SHJ solar cells. We emphasize, based on sufficient evidences, this work finds a distinct role of the CO2 plasma in SHJ solar cells opposed to reported mechanisms.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3