Affiliation:
1. College of Physics and Electronic Information Engineering Qinghai Minzu University Xining China
2. Information Science and Technology College Dalian Maritime University Dalian China
3. Chengdu Ganide Technology Company Chengdu China
Abstract
AbstractAs the key component of transceiver, power amplifier (PA) plays an extremely important role in wireless communication system. In order to accurately characterize the performance variation of PA at any temperature, the temperature behavior of a gallium arsenide (GaAs) pseudomorphic high electron mobility transistor (pHEMT) high gain monolithic microwave integrated circuit (MMIC) PA is modeled in this paper. In this modeling, the resilient back propagation neural network (BPNN) is utilized to do the temperature behavior modeling for this PA. The investigation shows that the minimum mean square error (MSE) of the prediction results is 4.9607 × 10−4, which implies that it is feasible to use this modeling method to characterize the temperature behavior of PA. This modeling not only theoretically overcomes the problem of slow convergence speed of BPNN, but also solves the limitation of experimental devices and time setting. It will provide a more convenient guidance for test engineers.
Funder
National Natural Science Foundation of China
West Light Foundation, Chinese Academy of Sciences
Subject
Electrical and Electronic Engineering,Computer Science Applications,Modeling and Simulation
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献