Transistor modeling based on LM‐BPNN and CG‐BPNN for the GaAs pHEMT

Author:

Lin Qian1ORCID,Yang Shuyue1,Yang Ruilan2,Wu Haifeng2

Affiliation:

1. School of Physics and Electronic Information Engineering Qinghai Minzu University Xining China

2. Chengdu Ganide Technology Chengdu China

Abstract

AbstractIn order to address the challenges of complex process and low precision in traditional device modeling, double hidden layer back propagation neural network (BPNN) are trained using the conjugate gradient (CG) algorithm and the Levenberg–Marquardt (LM) algorithm, the CG‐BPNN and LM‐BPNN models of small signal for gallium arsenide (GaAs) pseudomorphic high electron mobility transistor (pHEMT) are obtained and analyzed here. At first, the scattering parameters (S‐parameters) of GaAs pHEMT are divided into training set and test set randomly. Experimental results show that the CG‐BPNN model is better than another S‐parameters when predicting ImS12 with mean square error (MSE) of 7.6632e‐06, while LM‐BPNN model predicts ImS12 with MSE of 2.4672e‐06. Meanwhile, the MSE of CG‐BPNN model is higher than LM‐BPNN model when predicting all the S‐parameters. In addition, it shows a smaller fluctuation range for the error curve of LM‐BPNN model, which is more stable than the CG‐BPNN model. Therefore, the double hidden layer LM‐BPNN model is the better choice to characterize the small signal of GaAs pHEMT.

Publisher

Wiley

Reference44 articles.

1. RF-PA Modeling of PAPR: A Precomputed Approach to Reinforce Spectral Efficiency

2. ChowdhurySMAZ AlimMA RezazadehAA.Modeling of noise figure for GaAs pHEMTs based on frequency and temperature. In: 2022 2nd Asian Conference on Innovation in Technology (ASIANCON) Ravet India; 2022: 1‐4.

3. Microwave Wide-Band Model of GaAs Dual Gate MESFET's

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3