Electrical signature of heterogeneous human mesenchymal stem cells

Author:

Tsai Tunglin12,Vyas Prema D.1,Crowell Lexi L.12,Tran Mary12,Ward Destiney W.1,Qin Yufan1,Castro Angie1,Adams Tayloria N. G.123ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering University of California Irvine Irvine California USA

2. Sue and Bill Gross Stem Cell Research Center University of California Irvine Irvine California USA

3. Department of Biomedical Engineering University of California Irvine Irvine California USA

Abstract

AbstractHuman mesenchymal stem cells (hMSCs) have gained traction in transplantation therapy due to their immunomodulatory, paracrine, immune‐evasive, and multipotent differentiation potential. The inherent heterogeneity of hMSCs poses a challenge for therapeutic treatments and necessitates the identification of robust biomarkers to ensure reproducibility in both in vivo and in vitro experiments. In this study, we utilized dielectrophoresis (DEP), a label‐free electrokinetic phenomenon, to investigate the heterogeneity of hMSCs derived from bone marrow (BM) and adipose tissue (AD). The electrical properties of BM‐hMSCs were compared to homogeneous mouse fibroblasts (NIH‐3T3), human fibroblasts (WS1), and human embryonic kidney cells (HEK‐293). The DEP profile of BM‐hMSCs differed most from HEK‐293 cells. We compared the DEP profiles of BM‐hMSCs and AD‐hMSCs and found that they have similar membrane capacitances, differing cytoplasm conductivity, and transient slopes. Inducing both populations to differentiate into adipocyte and osteoblast cells revealed that they behave differently in response to differentiation‐inducing cytokines. Histology and reverse transcription‐quantitative polymerase chain reaction (RT‐qPCR) analyses of the differentiation‐related genes revealed differences in heterogeneity between BM‐hMSCs and AD‐hMSCs. The differentiation profiles correlate well with the DEP profiles developed and indicate differences in the heterogeneity of BM‐hMSCs and AD‐hMSCs. Our results demonstrate that using DEP, membrane capacitance, cytoplasm conductivity, and transient slope can uniquely characterize the inherent heterogeneity of hMSCs to guide robust and reproducible stem cell transplantation therapies.

Funder

National Science Foundation

Publisher

Wiley

Reference37 articles.

1. The MSC: An Injury Drugstore

2. Shattering barriers toward clinically meaningful MSC therapies

3. Label-free enrichment of fate-biased human neural stem and progenitor cells

4. High-throughput continuous dielectrophoretic separation of neural stem cells

5. Hepatocyte differentiatioon of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo;Aurich H;Hepatology,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3