Identifying developmental QTL alleles with favorable effect on grain yield components under late‐terminal drought in spring barley MAGIC population

Author:

Afsharyan Nazanin P.12ORCID,Sannemann Wiebke13,Ballvora Agim1ORCID,Léon Jens1ORCID

Affiliation:

1. Institute for Crop Science and Resource Conservation, Chair of Plant Breeding University of Bonn Bonn Germany

2. Department of Plant Breeding Justus Liebig University Giessen Giessen Germany

3. KWS Saat SE & Co. KGaA Einbeck Germany

Abstract

AbstractBarley is the fourth most cultivated cereal worldwide, and drought is a major cause of its yield loss by negatively affecting its development. Hence, better understanding developmental mechanisms that control complex polygenic yield‐related traits under drought is essential to uncover favorable yield regulators. This study evaluated seven above‐ground yield‐related traits under well‐watered (WW) and late‐terminal drought (TD) treatment using 534 spring barley multiparent advanced generation intercross double haploid (DH) lines. The analysis of quantitative trait loci (QTL) for WW, TD, marker by treatment interaction, and drought stress tolerance identified 69, 64, 25, and 25 loci, respectively, for seven traits from which 15 loci were common for at least three traits and 17 were shared by TD and drought stress tolerance. Evaluation of allelic effects for a QTL revealed varying effect of parental alleles. Results showed prominent QTL located on major flowering time gene Ppd‐H1 with favorable effects for grain weight under TD when flowering time was not significantly affected, suggesting that this gene might be linked with increasing grain weight by ways other than timing of flowering under late‐terminal drought stress. Furthermore, a desirable novel QTL allele was identified on chromosome 5H for grain number under TD nearby sucrose transporter gene HvSUT2. The findings indicated that spring barley multiparent advanced generation intercross population can provide insights to improve yield under complex condition of drought.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Plant Science,Biochemistry, Genetics and Molecular Biology (miscellaneous),Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3