Affiliation:
1. Faculty of Science and Technology Hirosaki University Hirosaki Japan
2. Department of Science and Technology, Faculty of Science and Technology Seikei University Tokyo Japan
Abstract
AbstractLocalization methods for autonomous construction vehicles include real‐time kinematic positioning through a global navigation satellite system (GNSS) and a scan matching with a light detection and ranging (LiDAR) attached to mobility. However, these conventional methods have low estimation accuracy when the vehicle's surroundings have few features and the vehicle is in the no‐GNSS area. For the estimation in such areas, this paper proposes a localization method that can estimate by matching a 3D model of a construction vehicle with a point cloud obtained from 3D LiDARs installed in a work area. To realize the high‐accuracy and high‐speed processing of the localization, we propose remodeling using the predictive motion model (RM) algorithm to modify the 3D model in the registration process. In the experimental results on rough terrain, we confirmed that our method can estimate a vehicle's position and yaw angle with accuracies of 0.121 m and 0.016 rad, respectively. In addition, compared with the case without the RM algorithm, the construction vehicle's position and yaw angle accuracies improved up to 5 and 12 times, respectively.
Funder
Japan Science and Technology Agency
Subject
Computer Science Applications,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献