Affiliation:
1. School of Mechanical Engineering Lovely Professional University Phagwara Punjab India
2. Faculty of Mechanical Engineering Shahrood University of Technology Shahrood Iran
3. Chemical Engineering and Petroleum Industries Department Al‐Mustaqbal University College Babylon Iraq
Abstract
AbstractDrinking water is a crucial need for human survival and solar stills (SSs) have emerged as a cost‐effective solution to meet this need from an economic point of view. In this work, the working of various SSs, their productivity factors, and various devices that can be integrated to improve their efficiency have been studied. The conversion of saline water into freshwater water using SSs has the potential to address the issue of drinking water. This study highlights the importance of SSs as a viable and sustainable solution for drinking water access. On the basis of various parameters correlating to the performance of the SSs, energy, exergy, economics, exergoeconomics, exergoenvironment, and enviroeconomics analysis has been analyzed in this study. To improve the performance and sustainability of SSs, various combinations were studied. These combinations include SSs with different nanoparticle coatings, phase‐change materials, photovoltaic modules, external condensers, wick materials, and reflectors. It is concluded that a comprehensive framework that integrates thermodynamic, economic, and environmental criteria can guide the development of more efficient and sustainable SS technologies.
Subject
General Energy,Safety, Risk, Reliability and Quality