A Comprehensive Study on Hydrogen Production via Waste Heat Recovery of a Natural Gas-Fueled Internal Combustion Engine in Cogeneration Power-Hydrogen Layouts: 4E Study and Optimization

Author:

Zoghi Mohammad1,Hosseinzadeh Nasser2ORCID,Gharaie Saleh1ORCID,Zare Ali1

Affiliation:

1. School of Engineering, Deakin University, Geelong, VIC 3216, Australia

2. Department of Renewables and Distributed Energy, Network Connections, Energy Queensland, 26 Reddacliff St., Newstead, QLD 4006, Australia

Abstract

Internal combustion engines (ICEs) are one of the significant sources of wasted energy, with approximately 65% of their input energy being wasted and dissipated into the environment. Given their wide usage globally, it is necessary to find ways to recover their waste energies, addressing this inefficiency and reducing environmental pollution. While previous studies have explored various aspects of waste energy recovery, a comparative analysis of different bottoming configurations has been lacking. In this research, an extensive review of the existing literature was conducted by an exploration of four key bottoming cycles: the steam Rankine cycle (SRC), CO2 supercritical Brayton cycle, inverse Brayton cycle (IBC), and air bottoming cycle. In addition, these four main bottoming systems are utilized for the waste energy recovery of natural gas-fired ICE with a capacity of 584 kW and an exhausted gas temperature of 493 °C. For the efficient waste heat recovery of residual exhausted gas and heat rejection stage of the main bottoming system, two thermoelectric generators are utilized. Then, the produced power in bottoming systems is sent to a proton exchange membrane electrolyzer for hydrogen production. A comprehensive 4E (energy, exergy, exergy-economic, and environmental) optimization is conducted to find the best main bottoming system for hydrogen production. Results showed that the SRC-based system has the highest exergy efficiency (21.93%), while the IBC-based system results in the lowest efficiency (13.72%), total cost rate (25.58 $/h), and unit cost of hydrogen production (59.91 $/GJ). This combined literature review and research article underscore the importance of finding an economically efficient bottoming cycle in the context of waste energy recovery and hydrogen production.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3