Affiliation:
1. AstroJo Institute Amman Jordan
2. Department of Physics and Astronomy University College London London UK
3. HUN‐REN–ELTE Complex Chemical Systems Research Group Budapest Hungary
4. ELTE Eötvös Loránd University Institute of Chemistry, Budapest and HUN‐REN–ELTE Complex Chemical Systems Research Group Budapest Hungary
5. Department of Physics The University of Jordan Amman Jordan
Abstract
AbstractA set of empirical rovibrational energy levels, obtained through the MARVEL (measured active rotational‐vibrational energy levels) procedure, is presented for the CO isotopologue of carbon dioxide. This procedure begins with the collection and analysis of experimental rovibrational transitions from the literature, allowing for a comprehensive review of the literature on the high‐resolution spectroscopy of CO, which is also presented. A total of 60 sources out of more than 750 checked provided 14,101 uniquely measured and assigned rovibrational transitions in the wavenumber range of 579–13,735 cm. This is followed by a weighted least‐squares refinement yielding the energy levels of the states involved in the measured transitions. Altogether 6318 empirical rovibrational energies have been determined for CO. Finally, estimates have been given for the uncertainties of the empirical energies, based on the experimental uncertainties of the transitions. The detailed analysis of the lines and the spectroscopic network built from them, as well as the uncertainty estimates, all serve to pinpoint possible errors in the experimental data, such as typos, misassignment of quantum numbers, and misidentifications. Errors found in the literature data were corrected before including them in the final MARVEL dataset and analysis.
Funder
European Cooperation in Science and Technology
European Research Council
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
Science and Technology Facilities Council
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献