Radiative forcing due to carbon dioxide decomposed into its component vibrational bands†

Author:

Shine Keith P.1ORCID,Perry Georgina E.1

Affiliation:

1. Department of Meteorology University of Reading Reading UK

Abstract

AbstractThe radiative forcing (RF) of climate change due to increases in carbon dioxide (CO2) concentration is primarily in the wavenumber region 500–850 cm−1 (wavelengths of approximately 12 to 20 μm). It originates from absorption and emission of infrared radiation due to vibrational–rotational transitions of the CO2 molecule. While this RF has been the subject of intense and detailed study, to date, the contribution of different vibrational transitions to this forcing has not been explored. This article presents an analysis of radiative transfer calculations that quantify the role of different vibrational transitions and illustrates that while the fundamental bending mode contributes nearly 90% of the total infrared intensity, it contributes less than half of the RF at present‐day CO2 concentrations; this is because the absorption at the centre of this fundamental band is so intense that the effect of additional CO2 is strongly muted. By successively adding in additional CO2 bands to the calculations, it is demonstrated that a key spectroscopic phenomenon, known as Fermi Resonance (an interaction between excited states of the bending and the symmetric stretching modes of CO2) leads to a significant spreading of the infrared intensity to both higher and lower wavenumbers, where the fundamental bending mode is less important. The Fermi Resonance transitions contribute only about 4% of the total infrared intensity in this spectral region but cause more than half of the present‐day RF. The less‐abundant isotopologues of CO2 have little impact on the spectrally integrated RF, but this small contribution results from a compensation between more significant positive and negative contributions to the spectral RF. This work does not alter the results of detailed RF calculations available in the literature; rather, it helps explain the physical basis of that forcing.

Publisher

Wiley

Subject

Atmospheric Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3