How dense can you be? New automatic measures of vein density in angiosperm leaves

Author:

Green Walton A.1ORCID,Losada Juan M.2

Affiliation:

1. Department of Organismic and Evolutionary Biology Harvard University, Harvard Botanical Museum 26 Oxford Street Cambridge Massachusetts 02138 USA

2. Institute of Subtropical and Mediterranean Hortofruticulture La Mayora–CSIC–UMA Avda. Dr. Wienberg s/n, Algarrobo‐Costa 29750 Malága Spain

Abstract

AbstractPremiseBecause of the trade‐off between water loss and carbon dioxide assimilation, the conductivity of the transpiration path in a leaf is an important limit on photosynthesis. Closely packed veins correspond to short paths and high assimilation rates while widely spaced veins are associated with higher resistance to flow and lower maximum photosynthetic rates. Vein length per area (VLA) has become the standard metric for comparing leaves with different vein densities; its measurement typically utilizes digital image processing with varying amounts of human input.Methods and ResultsHere, we propose three new ways of measuring vein density using image analysis that improve on currently available procedures: (1) areole area distributions, (2) a sizing transform, and (3) a distance map. Each alternative has distinct practical, statistical, and biological limitations and advantages. In particular, we advocate the log‐transformed modal distance map of a vein mask as an estimator to replace VLA as a standard metric for vein density.ConclusionsThese methods, for which open‐source code appropriate for high‐throughput automation is provided, improve on VLA by producing determinate measures of vein density as distributions rather than point estimates. Combined with advances in image quality and computational efficiency, these methods should help clarify the physiological and evolutionary significance of vein density.

Publisher

Wiley

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances in plant imaging across scales;Applications in Plant Sciences;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3