Comparison of Anticancer, Antioxidant, Enzyme Inhibitory Effects and Phytochemical Contents Between Edible Lettuce (Lactuca sativa) and a New Wild Species (Lactuca anatolica)

Author:

Erdogan Mehmet Kadir1ORCID,Gundogdu Ramazan23,Toy Yusuf1,Halil Gecibesler Ibrahim4,Yapar Yakup1,Behcet Lutfi1,Zengin Gokhan5

Affiliation:

1. Department of Molecular Biology and Genetics Faculty of Arts and Sciences Bingol University Bingol Turkiye

2. Department of Pharmacy Services Vocational School of Health Services Bingol University Bingol Turkiye

3. Current address: Sir William Dunn School of Pathology University of Oxford Oxford United Kingdom.

4. Department of Occupational Health and Safety Faculty of Health Science Bingol University Bingol Turkiye

5. Department of Biology Science Faculty Selcuk University Konya Turkiye

Abstract

AbstractIn this study, the bioactive components, enzyme inhibitory, antioxidant and anticancer potentials of edible (L. sativa) and a new species (L. anatolica) of Lactuca were evaluated and compared. The quantitative analyzes of the bioactive components of L. sativa (LS) and L. anatolica (LA) were analyzed quantitatively by GC‐MS and Orbitrab HPLC‐HRMS. Antioxidant, enzyme inhibitory and anticancer properties were analyzed by various assays. In general, LA exhibited more stronger antioxidant properties compared to LS. The extracts showed similar inhibitory effects on these enzymes. It was determined that LS was dominant in terms of linoleic acid (23.71 %), while LA contained a high level of α‐linolenic acid (31.70 %). LA and LS inhibited the viability of A549 and MCF‐7 cells in a dose‐dependent manner. IC50 values for LA, LS and cisplatin were determined as 120.3, 197.5, 4.3 μg/mL in A549 cell line and 286.2, 472.8, 7.2 μg/mL in MCF‐7 cell line, respectively. It was revealed that LA and LS treatment at 50 μg/mL concentrations in A549 cells completely suppressed the colony forming capacity, and treatment with IC50 doses inhibited cell migration, and triggered apoptosis by regulating caspase‐3, cPARP, p53 and p21. The findings of this study suggested that these species have significant pharmacological potential.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3