Affiliation:
1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering Wuhan University of Technology No. 122, Luoshi Rd. Wuhan 430070 China
2. Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory No. 1, Yangming Rd. Foshan 528200 China
Abstract
Because poly(3,4‐ethylenedioxythiophene)‐poly(styrenesulfonate) (PEDOT:PSS) is water processable, thermally stable, and highly conductive, PEDOT:PSS and its composites have been considered to be one of the most promising flexible thermoelectric materials. However, the PEDOT:PSS film prepared from its commercial aqueous dispersion usually has very low conductivity, thus cannot be directly utilized for TE applications. Here, a simple environmental friendly strategy via femtosecond laser irradiation without any chemical dopants and treatments was demonstrated. Under optimal conditions, the electrical conductivity of the treated film is increased to 803.1 S cm−1 from 1.2 S cm−1 around three order of magnitude higher, and the power factor is improved to 19.0 μW m−1 K−2, which is enhanced more than 200 times. The mechanism for such remarkable enhancement was attributed to the transition of the PEDOT chains from a coil to a linear or expanded coil conformation, reduction of the interplanar stacking distance, and the removal of insulating PSS with increasing the oxidation level of PEDOT, facilitating the charge transportation. This work presents an effective route for fabricating high‐performance flexible conductive polymer films and wearable thermoelectric devices.
Funder
Fundamental Research Funds for the Central Universities
National Basic Research Program of China
Subject
Energy (miscellaneous),Waste Management and Disposal,Environmental Science (miscellaneous),Water Science and Technology,General Materials Science,Renewable Energy, Sustainability and the Environment
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献