Phase Separation Manipulated Gradient Conductivity for A High‐Precision Flexible Pressure Sensor

Author:

Zeng Mingze1,Ding Jie1,Tian Yuan1,Zhang Yusheng1,Liu Xiaoyin12,Chen Zhihong1,Sun Jing1,Wu Chengheng13,Yin Huabing4,Wei Dan1,Fan Hongsong1ORCID

Affiliation:

1. National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu 610064 China

2. Department of Neurosurgery West China Medical School West China Hospital Chengdu 610041 China

3. Institute of Regulatory Science for Medical Devices Sichuan University Chengdu 610065 China

4. James Watt School of Engineering University of Glasgow Glasgow G12 8LT UK

Abstract

AbstractPiezoresistive pressure sensors, analyzing and converting external pressure signals to readable electrical signals for monitoring human health, are always subjected to simultaneously possess high signal‐linearity and signal sensitivity. Analogous to the control of sophisticated microstructure for increasing active sensing area, the control of gradient conductivity should enable a linear response via regulating the formed saturation current. Here, inspired by phase separation showing the feasibility of controlling material microstructure and conductivity, a high‐performance flexible pressure sensor via the simultaneous control of microgroove structure and wide‐range gradient conductivity is demonstrated. First, a laser‐etching and dopamine (DA)‐doping synergistic approach is used to induce selective phase separation in poly(3,4‐ethylenedioxythiophene): poly(styrenesulfonic acid) (PEDOT:PSS), achieving broad conductivity modulation (from 297 to 4525 S cm−1) and precise microgroove pattern (15.5 µm). Then, by designing conductivity‐gradient PEDOT: PSS‐based multi‐sublayers and microgroove interlocked structure, the sensor shows extraordinarily comprehensive performance of excellent stress‐sensing sensitivity (4 × 105 kPa−1), high linear responsiveness (99.85%) and wide‐range sensing ability (up to 100 kPa). Consequently, this sensor reveals excellent capability in detecting multi‐mode pressure changes and is expected to branch out into other electronic device designs as a general strategy for the precise manipulation of material physical‐chemical properties.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3