A Decentralized Voltage Regulation Scheme Using Improved Volt‐Var Function of PV Smart Inverter

Author:

Xie Shanghong1,Kaneko Akihisa1,Hayashi Yasuhiro1

Affiliation:

1. Department of Electrical Engineering and Bioscience Waseda University 3‐4‐1‐63‐6A, Okubo Shinjuku‐ku Tokyo Japan

Abstract

With the growing distributed PV installation rate in distribution systems, voltage regulation difficulties such as local voltage violations and fluctuations have become common. To solve the voltage regulation problems, the local voltage regulation method using volt‐var (VV) function is effective for its high regulation speed, high accuracy, and flexibility. However, there are still hurdles on real application, such as parameter setting difficulties, insufficient voltage fluctuation mitigation effect, and unfairness of reactive power generation between PV customers. To further improve the VV function, this paper proposes a PID closed‐loop based VV function and mode‐switching function of PV smart inverter (SI). To validate the proposed methods, numerical simulations were conducted using a 6‐feeder distribution system model based on the JST‐CREST 126 distribution feeder model. According to the simulation result, the proposed method can better mitigate the local voltage violation compared to basic VV function based on the VV curve, also improve the fairness between PV customers, while the total reactive power generation and tap operations increases for the aim of more adequate voltage regulation. © 2024 The Authors. IEEJ Transactions on Electrical and Electronic Engineering published by Institute of Electrical Engineers of Japan and Wiley Periodicals LLC.

Funder

KAKENHI

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3