Voltage Rise Mitigation in Medium-Voltage Networks with Long Underground Cables and Low Power Demand

Author:

Ćetković Deni1,Žutolija Josip2,Komen Vitomir1

Affiliation:

1. Faculty of Engineering, University of Rijeka, 51000 Rijeka, Croatia

2. HEP—Distribution System Operator, Elektroprimorje, 51000 Rijeka, Croatia

Abstract

Medium-voltage (MV) distribution networks that are spread through larger territory and threatened by extreme weather conditions are sometimes formed by very long underground cable lines. In such circumstances, a significant amount of capacitive reactive power flow can be generated. If, concurrently, there is low power demand in the network, it can result in significant reverse reactive power flows and voltage rise issues. This paper proposes a general approach for analyzing and mitigating voltage rise issues and demonstrates it using an example of a real distribution network that operates under the described conditions. Previous studies that dealt with this problem did not include the allocation of multiple shunt reactors in a larger distribution network, modeling a high number of lines that create reverse reactive power flows, and modeling the main distribution transformers, which are the locations where voltage rise predominantly occurs. In this paper, we demonstrate that precise allocation and placement of multiple shunt reactors in a fully modeled, larger distribution system, including transformer models, can reduce reverse reactive power flows, thereby improving voltage in the distribution system. If hourly control of the power factor from the distributed generation unit is also implemented, the voltage can be further improved.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3