Predictability‐Aware Subsequence Modeling for Sequential Recommendation

Author:

Deng Hangyu1,Hu Jinglu1

Affiliation:

1. Graduate School of Information, Production and Systems Waseda University, 2–7 Hibikino, Wakamatsu, Kitakyushu‐shi Fukuoka 808–0135 Japan

Abstract

Sequential recommendation frames the recommendation task as a next‐item prediction problem, where the model is trained to predict the next item given a user behavior sequence. While recent research has made significant progress in developing advanced models for this task, there exists a notable gap in the exploration of subsequences and the predictability inherent in user behavior sequences. This oversight can lead models to recall inconsequential sequential patterns, adversely affecting recommendation quality. In this paper, we introduce a novel approach to augmenting sequential recommendation by integrating predictability awareness into subsequence modeling. Our method begins by discerning the predictability of target items; those easily predicted often align with the preceding subsequence, while those that are hard to predict typically indicate transitions to other subsequences. Leveraging this predictability information, we enhance the discovery of meaningful subsequences within individual user behavior sequences. Evaluation of four benchmark data sets using various state‐of‐the‐art sequential models illustrates the efficacy of our approach in enhancing recommendation performance. © 2024 Institute of Electrical Engineers of Japan and Wiley Periodicals LLC.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3