Optimization of the glass transition temperature of polyvinyl pyrrolidone/polyacrylamide blend films using response surface methodology

Author:

Yazie Negese1,Worku Delele23ORCID,Gabbiye Nigus13,Alemayehu Addisu4,Getahun Zerihun4

Affiliation:

1. Department of Chemical Engineering, Bahir Dar Institute of Technology Bahir Dar University Bahir Dar Ethiopia

2. Department of Chemistry, College of Science Bahir Dar University Bahir Dar Ethiopia

3. Energy Research Center, Bahir Dar Institute of Technology Bahir Dar University Bahir Dar Ethiopia

4. Department of Materials Science and Engineering, College of Science Bahir Dar University Bahir Dar Ethiopia

Abstract

AbstractIn this study, we aimed at synthesizing polymeric materials consisting of polyvinyl pyrrolidone (PVP) enhanced polyacrylamide (PAM) blend films and optimizing the glass transition temperature (Tg) of the synthesized polymeric blends. The PAM and PVP polymers were blended through solution casting techniques by varying PAM (0.3–1.2 g) and PVP (0.3–1 g) concentrations in parallel. The response surface methodology (RSM) experimental design, a mathematical and statistical method, was used to design the experiments, model the process, and determine the optimum concentrations of the blended films having the lowest Tg value. The polymeric blends were characterized using differential scanning calorimetry (DSC) to investigate their phase transition temperatures such as their Tg. Moreover, the polymeric blends with the lowest Tg values were characterized using Fourier transform infrared spectroscopy (FTIR), Thermogravimetric analyzer (TGA), and UV–Vis spectroscopy to investigate the interactions existing between the parental polymers, the thermal stability, and the optical properties such as energy band gap of the parental polymers and optimized blended films respectively. It was found that Tg of the blended films was strongly dependent on the concentrations of the parental polymers, and PAM polymer exhibited a more pronounced effect on the Tg of the blended films. The Tg of the synthesized films declined when the parental polymers were blended at higher concentrations. The energy band gap and the thermal stability of the optimized blended films were lower than that of the parental polymers (i.e., 4.90 eV and 210°C). The DTG curve of the optimized blended films exhibited a maximum weight loss at 467°C. The RSM statistical analysis revealed a high regression coefficient (R2) of 0.970 for the Tg of the blended films, showing the experimental values analyzed are in good agreement with the developed model. Numerical optimization results showed that an optimum concentration of the blended films yielded the lowest Tg value of 83.63°C, which is close to the predicted Tg of 82.32°C, was achieved with 1.2 g of PAM and 1 g of PVP. The higher Tg value of the optimized blended films indicates that the polymer blends formed are highly brittle at room temperature when available in a dry state.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3