Preparation and Composition Optimization of PEO:MC Polymer Blend Films to Enhance Electrical Conductivity

Author:

Ahmed Hawzhin T.,Abdullah Omed Gh.ORCID

Abstract

The polymer blend technique was used to improve amorphous phases of a semicrystalline polymer. A series of solid polymer blend films based on polyethylene oxide (PEO) and methylcellulose (MC) were prepared using the solution cast technique. X-ray diffraction (XRD), Polarized optical microscope (POM), Fourier transform infrared (FTIR) and electrical impedance spectroscopy (EIS) were used to characterize the prepared blend films. The XRD and POM studies indicated that all polymer blend films are semicrystalline in nature, and the lowest degree of crystallinity was obtained for PEO:MC polymer blend film with a weight ratio of 60:40. The FTIR spectroscopy was used to identify the chemical structure of samples and examine the interactions between chains of the two polymers. The interaction between PEO and MC is evidenced from the shift of infrared absorption bands. The DC conductivity of the films at different temperatures revealed that the highest conductivity 6.55 × 10−9 S/cm at ambient temperature was achieved for the blend sample with the lowest degree of crystallinity and reach to 26.67 × 10−6 S/cm at 373 K. The conductivity relaxation process and the charge transport through the hopping mechanism have been explained by electric modulus analysis. The imaginary part of electrical modulus M″ shows an asymmetrical peak, suggesting a temperature-dependent non-Debye relaxation for the PEO:MC polymer blend system.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3