Rapid discovery of three umami crab peptides from Eriocheir sinensis by virtual hydrolysis and LC–MS/MS

Author:

Pei Yiqiao1,Xu Yujie1,Li Yi1,Wang Tianxin1,He Zouyan2,Liu Jianhui3,Zhang Ye1,Wang Hao1ORCID

Affiliation:

1. State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology (TUST) Tianjin China

2. Department of Nutrition and Food Hygiene School of Public Health Guangxi Medical University Nanning Guangxi China

3. College of Food Science and Engineering Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety Nanjing China

Abstract

AbstractTraditionally, Eriocheir sinensis elicits wide distribution, easy accessibility, and unique taste, but the low comprehensive utilization restricts its application. The present study aimed to extract and identify peptides from the defective E. sinensis and analyze the umami mechanism of crab peptides. Virtual hydrolysis showed that protein hydrolysate prepared by the dual enzyme combination (papain and alkaline protease) had high hydrolysis degrees and umami fragments, which was consistent with the actual hydrolysis results. The three strong‐flavoring crab peptides (AADESERM, SDEERMDAL, and EERAESGES) were screened by umami prediction and amino acid sequence analysis, and the umami profiles with thresholds ranged 0.0625–0.250 mg/mL determined by sensory evaluation and electronic tongue. The AADESERM had the highest umami enhancement effect. Besides, molecular docking and molecular dynamics simulation revealed that all the three crab peptides bound stably to the active cavity of T1R1. Asp147, His71, Ala302, Cys106, and Lys379 were the crucial binding sites for umami presentation. This study was accurately identifying umami crab peptides from defective E. sinensis based on pre‐virtual hydrolysis. It will reduce the wastage of crab resources and further provide support for the high‐value utilization.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3