Energy Harvesting from Water Flow by Using Piezoelectric Materials

Author:

Li Zihe1ORCID,Roscow James1,Khanbareh Hamideh1,Haswell Geoff2,Bowen Chris1ORCID

Affiliation:

1. Materials and Structures Research Centre Department of Mechanical Engineering University of Bath Claverton Down Bath BA2 7AY UK

2. EMD Ltd. The Old Manse, 29 St. Mary St. Ilkeston Derbyshire DE7 8AB UK

Abstract

As a promising energy‐harvesting technique, an increasing number of researchers seek to exploit the piezoelectric effect to power electronic devices by harvesting the energy associated with water flow. In this emerging field, a variety of research themes attract interest for investigation; these include selection of the excitation mechanism, oscillation structure, piezoelectric material, power management interface circuit, and application. Since there has been no comprehensive review to date with respect to the harvesting of water flow using piezoelectric materials, herein relevant work in the last 25 years is reviewed. To ensure that key aspects of the water‐flow energy harvester are overviewed, they are discussed in the context of energy‐flow theory, which includes the three stages of energy extraction, energy conversion, and energy transfer. The development of each energy‐flow process is reviewed in detail and combined with meta‐analysis of the published literature. Correlations between the harvesting processes and their contribution to the overall energy‐harvesting performance are illustrated, and directions for future research are also proposed. In this review, a comprehensive understanding of water‐flow piezoelectric energy harvesting is provided and it is aimed to guide future research and the development of piezoelectric harvesters for water‐flow‐powered devices is promoted.

Funder

Engineering and Physical Sciences Research Council

Publisher

Wiley

Subject

Linguistics and Language,Anthropology,History,Language and Linguistics,Cultural Studies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3